Journal of Organometallic Chemistry, 402 (1991) 43-54 Elsevier Sequoia S.A., Lausanne JOM 21095

Study of polyfunctional stannylallenes using NMR spectroscopy

E. Liepiņš, I. Birğele, E. Lukevics

Institute of Organic Synthesis, Latvian Academy of Sciences, Riga (USSR)

E.T. Bogoradovsky and V.S. Zavgorodny LENSOVET Leningrad Technological Institute, Leningrad (USSR) (Received May 30th, 1990)

Abstract

A series of stannylallene derivatives Me₃SnC(X)=C=C(Y)Z (1) (X = H, SnMe₃, SiMe₃, GeMe₃, SC₂H₅, Br; Y = H, SnMe₃; Z = H, SnMe₃, SiMe₃, GeMe₃, SC₂H₅) were studied by means of ¹³C, ²⁹Si, ¹¹⁹Sn NMR spectroscopy. It is revealed that in 1 the effects of substituents on chemical shift (CS) values and spin-spin coupling constants (SSCC) are additive. The set of linear correlations found between the isotope shifts (IS) and SSCC in the molecules of 1 demonstrates the interrelation of these values.

Introduction

There are only a few reports in the literature regarding NMR investigations of stannylallenes [1-4]. Recently, we have carried out a synthesis of allenes substituted by a Group IVb element [5]. The present work deals with the study of stannylallenes and silylstannylallenes by means of multinuclear NMR.

(1: X = H, SnMe₃, SiMe₃, GeMe₃, SC₂H₅, Br; Y = H, SnMe₃; Z = H, SnMe₃, SiMe₃, GeMe₃, SC₂H₅)

Experimental

NMR spectra were recorded on a Bruker WM-360 instrument at 90.5 MHz (13 C); at 134.3 MHz (119 Sn) and at 70.5 MHz (29 Si). The substances were studied as 10% solutions in C₆D₆. Tetramethylsilane was used as an internal standard for 13 C and

0022-328X/91/\$03.50 © 1991 - Elsevier Sequoia S.A.

		C _{YZ}		- 0.06	- 0.82	- 9.03	29.86(CH ₂)	15.09(CH ₃)	- 8.23(SnMe ₃)	0.67(SiMe ₃)	-8.21(SnMe ₃)	0.01(GeMe ₃)	- 8.32	29.04(CH ₂)	15.41(CH ₃)	– 8.79(SnMe ₃)	- 0.09	- 0.85	29.74(CH ₂)	15.21(CH ₃)	0.23(SnMe ₃) 0.18(SiMe ₂)
		XCH ₃	- 8.53	- 8.35	- 8.38	- 8.38	- 8.06		- 8.29		- 8.27		- 8.32	- 8.06			0.32	0.32	0.53		0.76
		SnCH ₃	- 8.53	-8.35	- 8.38	- 8.38	- 8.06		- 8.29		- 8.27		- 8.32	- 8.06			-8.15	- 8.21	- 7.88		- 8.06
		చ	53.01	55.36	56.70	50.49	65.14		52.69		54.20		47.36	64.03			59.14	60.05	68.63		56.79
ς,D,		C _B	205.98	202.91	201.76	201.32	204.08		196.08		196.13		195.58	200.00			204.93	203.32	206.13		197.48
=C ₇ in (δ(¹³ C)	പ്പ	75.23	65.06	65.96	61.98	79.59		50.78		52.06		47.36	70.04			71.44	71.92	<i>77.92</i>		56.79
$r_{x}^{le_{3}Sn}c_{a}=c_{\beta}$	δ(¹¹⁹ Sn)		- 9.55	- 3.56	-4.94	- 3.12	- 5.07		3.40		1.87		3.73	- 1.82			- 5.95	- 7.73	- 6.08		0.34
N annylallenes	Z		Н	SiMe	GeMe	SnMe	SC ₂ H ₅	l	SiMe3		GeMe3		SnMe ₃	SC ₂ H ₅			SiMe ₃	GeMe	SC ₂ H ₅		SiMe3
¹⁹ Sn), ppm of sti	Y		Н	Н	Н	Н	Н		SnMe ₃		SnMe ₃		SnMe ₃	SnMe ₃			Н	Н	Н		SnMe ₃
CS &(¹³ C, ¹	×		SnMe ₃	ŀ													SiMe,	1			

ļ

1

I ī

!

.

ī

1 | |

CS $\delta(^{13}C.^{119}Sn)$, npm of stannylallenes

Table 1

44

Sinde, Sinde, Sinde, Sinde, Sinde, H Sinde, SC ₂ H, SC ₂ H, H 0.02 52.69 196.08 We, H H SC ₂ H, Sinde, H -3.68 76.40 200.59 H Sinde, H -7.42 71.59 203.58 H Sinde,		le, – 1.48	57.64	196.97	51.13	-8.14	0.74	- 8.1 /(SniMe ₃) 0.04(GeMe ₄)
SnMe, SC ₂ H, -3.68 76.40 200.59 H SiMe, -7.42 71.59 203.58 H GeMe, -9.01 72.20 203.58 H GeMe, -9.01 72.20 203.16 H GeMe, -8.49 78.71 204.36 SnMe, SiMe, -0.95 57.73 197.48 SnMe, GeMe, -0.95 57.73 197.48 SnMe, SiMe, -1.03 58.60 196.45 SnMe, SnMe, -1.03 54.20 199.54 SnMe, SnMe, -1.188 67.52 200.59 SnMe, -1.188 67.52 200.59 SnMe, -3.48 68.66 199.54 SnMe, -3.48 68.66 199.54 SnMe, -3.48 68.66 199.54 SnMe, -3.48 68.66 199.54	nMe, SnM	e, 0.02	52.69	196.08	50.78	- 8.23	0.67	- 8.29
H SiMe ₃ -7.42 71.59 203.58 H GeMe ₃ -7.42 71.59 203.58 H GeMe ₃ -9.01 72.20 203.10 H SC ₂ H ₅ -9.01 72.20 203.10 SnMe ₃ SiMe ₃ -0.95 57.73 197.48 SnMe ₃ SiMe ₃ -1.03 58.60 196.45 SnMe ₃ SnMe ₃ -1.03 54.20 196.45 SnMe ₃ SnMe ₃ -1.03 54.20 196.45 SnMe ₃ SnMe ₃ -1.03 54.20 199.54 SnMe ₃ SiMe ₃ -3.48 68.66 199.54 SnMe ₄ -3.48 68.66 199.54 SnMe ₄ -3.44 64.03 200.00	nMe, SC,I	H, – 3.68	76.40	200.59	67.52	- 7.88	0.38	-8.76(SnMc ₃)
H SiMe ₃ -7.42 71.59 203.58 H GeMe ₃ -9.01 72.20 203.10 H Sc ₂ H ₅ -8.49 78.71 204.36 SnMe ₃ SiMe ₃ -0.95 57.73 197.48 SnMe ₃ SiMe ₃ -0.95 57.73 197.48 SnMe ₃ GeMe ₃ -2.61 58.60 197.48 SnMe ₃ GeMe ₃ -2.61 58.60 197.48 SnMe ₃ SnMe ₃ -1.03 54.20 197.48 SnMe ₃ SnMe ₃ -1.03 54.20 197.48 SnMe ₃ SnMe ₃ -1.03 54.20 196.13 SnMe ₃ SnMe ₃ -1.03 54.20 199.54 SnMe ₃ SnMe ₃ -1.88 67.52 200.59 SnMe ₃ SnMe ₃ -3.48 68.66 199.54 SnMe ₃ SnMe ₃ -3.48 68.66 199.54	•	'n						28.81(CH ₂) 15.35(CH ₃)
H GeMe, H -9.01 72.20 202.10 H SC ₂ H ₅ -8.49 78.71 204.36 SnMe, Sn	SiMe	-7.42	71.59	203.58	59.69	- 8.26	-0.29	-0.12
H SC ₂ H ₅ -8.49 78.71 204.36 SnMe ₅ SiMe ₅ -0.95 57.73 197.48 SnMe ₅ GeMe ₅ -0.95 57.73 197.48 SnMe ₅ GeMe ₅ -2.61 58.60 196.45 SnMe ₅ SnMe ₅ SnMe ₅ -3.96 77.33 199.54 SnMe ₅ SC ₂ H ₅ -3.96 77.33 199.54 SnMe ₅ SnMe ₅ SnMe ₅ -3.96 77.33 199.54 SnMe ₅ SnMe ₅ -1.03 54.20 199.54 SnMe ₅ SnMe ₅ -3.96 77.33 199.54 SnMe ₅ SnMe ₅ -3.48 67.52 201.32 SnMe ₅ GeMe ₅ -3.48 68.66 199.54 SnMe ₅ GeMe ₅ -3.48 68.66 199.54	GeM	le, - 9.01	72.20	202.10	60.71	- 8.32	- 0.34	-0.89
SnMe ₃ SiMe ₃ -0.95 57.73 197.48 SnMe ₃ GeMe ₃ -2.61 58.60 196.45 SnMe ₃ SnMe ₃ SnMe ₃ -1.03 54.20 196.45 SnMe ₃ SnMe ₃ -1.03 54.20 196.45 SnMe ₃ SnMe ₃ -1.03 54.20 196.45 SnMe ₃ SC ₂ H ₅ -3.96 77.33 199.54 SnMe ₃ SnMe ₃ -8.66 50.49 201.32 SnMe ₃ SiMe ₃ -8.66 50.49 201.32 SnMe ₃ SiMe ₃ -1.88 67.52 200.59 SnMe ₃ GeMe ₃ -3.48 68.66 199.54 SnMe ₄ SnMe ₄ -3.48 68.66 199.54	SC ₂ I	H ₅ -8.49	78.71	204.36	69.30	- 8.00	-0.35	29.30(CH ₂)
SnMe ₃ SiMe ₃ -0.95 57.73 197.48 SnMe ₃ GeMe ₃ -2.61 58.60 196.45 SnMe ₃ SnMe ₃ SnMe ₃ -1.03 54.20 196.13 SnMe ₃ SnMe ₃ SC ₂ H ₃ -3.96 77.33 199.54 SnMe ₃ SC ₂ H ₅ -3.96 77.33 199.54 SnMe ₃ SnMe ₃ SnMe ₃ -3.96 77.33 199.54 SnMe ₃ SnMe ₃ -1.88 67.52 200.59 SnMe ₃ GeMe ₃ -3.48 68.66 199.54 SnMe ₃ SnMe ₃ -3.48 68.66 199.54			1					15.21(CH ₃)
SnMe ₃ GeMe ₃ -2.61 58.60 196.45 SnMe ₃ SnMe ₃ -1.03 54.20 196.13 SnMe ₃ SC ₂ H ₅ -3.96 77.33 199.54 SnMe ₃ SC ₂ H ₅ -3.96 77.33 199.54 SnMe ₃ SnMe ₃ -8.66 50.49 201.32 SnMe ₃ SiMe ₃ -1.88 67.52 200.59 SnMe ₃ GeMe ₃ -3.48 68.66 199.54 SnMe ₃ SiMe ₃ -1.88 67.52 200.59	aMe ₃ SiMe	e ₃ – 0.95	57.73	197.48	57.64	-8.17	0.04	- 8.14(SnMe ₃) 0.74(SiMe ₃)
SnMe ₃ SnMe ₃ SnMe ₃ SnMe ₃ S4.20 196.13 SnMe ₃ SC ₂ H ₅ -3.96 77.33 199.54 SnMe ₃ SnMe ₃ SnMe ₅ -8.66 50.49 201.32 SnMe ₃ SiMe ₃ -1.88 67.52 200.59 SnMe ₅ GeMe ₃ -3.48 68.66 199.54	nMe, GeM	le, – 2.61	58.60	196.45	58.60	- 8.21	- 0.04	I
SnMe ₃ SC ₂ H ₃ -3.96 77.33 199.54 SnMe ₃ SnMe ₃ SnMe ₃ -8.66 50.49 201.32 SnMe ₃ SnMe ₃ -1.88 67.52 200.59 SnMe ₃ GeMe ₃ -3.48 68.66 199.54 SnMe ₄ SnMe ₄ -3.48 64.03 200.00	nMe, SnM	e, – 1.03	54.20	196.13	52.06	- 8.21	0.01	- 8.27(SnMe ₃)
SnMe ₃ SnMe ₃ -8.66 50.49 201.32 SnMe ₃ SiMe ₃ -1.88 67.52 200.59 SnMe ₃ GeMe ₃ -3.48 68.66 199.54 SnMe SnMe SnMe -7.94 64.03 200.00	nMe, SC ₂ I	ł, – 3.96	77.33	199.54	68.66	- 7.97	-0.15	- 8.76(SnMe ₃)
SnMe ₃ SnMe ₃ –8.66 50.49 201.32 SnMe ₃ SiMe ₃ –1.88 67.52 200.59 SnMe ₃ GeMe ₃ –3.48 68.66 199.54 SnMe ₄ SnMe ₄ –7.94 64.03 200.00	a 3	Ň						28.78(CH ₂) 15.41(CH ₃)
, SnMe ₃ SiMe ₃ – 1.88 67.52 200.59 SnMe ₃ GeMe ₃ – 3.48 68.66 199.54 SnMe SnMe SnMe – – 7.94 64.03 200.00	nMe ₃ SnM	e3 – 8.66	50.49	201.32	61.98	- 9.03	I	- 8.38
SnMe ₃ GeMe ₃ – 3.48 68.66 199.54 SnMe SnMe – 7.94 64.03 200.00	nMe ₃ SiMe	-1.88 – 1.88	67.52	200.59	76.40	-8.76	28.81(CH ₂) 15.36(CH ₁)	- 7.88(SiMe ₃) 0.38(SiMe ₄)
Co Me. Sp Me 7 94 64 03 200.00	aMe ₃ GeM	le ₃ – 3.48	68.66	199.54	77.33	- 8.76	28.78(CH ₂) 15.41(CH ₃)	- 7.97(SnMe ₃) - 0.15(GeMe ₃)
	nMe ₃ SnM	e ₃ - 2.94	64.03	200.00	70.04	- 8.79	29.04(CH ₂) 15.41(CH ₃)	– 8.06(SnMe ₃)
Н Н 2.98 78.51 206.98	Η	2.98	78.51	206.98	74.96	- 8.56		

Coupling (constants and is	sotope shifts of a	stannylallenes	X Ca	=c_=c_`	in C ₆ D ₆				
×	Y	Z	Coupling	constants (Hz				Isotope shifts (p	pb)	{
			SnCa	SnC _B	SnC,	¹¹⁹ Sn- ¹¹⁷ Sn	SnC _{CH}	$^{1}\Delta^{119}$ Sn(C _a)	$^{1}\Delta^{119}$ Sn(C _{CH₃})	}
SnMe	H	Н	261.7	30.5	60.6	158.5	348.2	31.8	9.0	}
•	Н	SiMe3	264.4	26.3	50.1	169.1	349.4	34.3	7.1	
	Н	GeMe	269.9	26.8	57.1	190.9	347.6	33.8	7.7	
	Н	SnMe	274.1	26.1	58.9	199.4(2))	347.0	34.2	7.7	
	Н	SC ₂ H ₅	239.8	31.2	65.1	166.5	348.1	37.5	6.6	
	SnMe ₃	SiMe	281.7	21.4	48.6	$202.6(^{2}J)$	348.0	32.2	7.5	
		ŀ				248.6(⁴ J)				
	SnMe ₃	GeMe ₃	285.1	22.7	54.5	$226.2(^{2}J)$	345.9	31.9	9.2	
						250.5(⁴ J)				
	SnMe ₃	SnMe ₃	292.9	22.1	54.8	234.0(² J)	345.6	31.1	9.3	
						254.2(⁴ J)				
	SnMe ₃	SC_2H_5	263.2	30.5	66.4	246.3(² J)	343.0	33.2	7.5	

ļ

۲ Me₃Sn

Table 2

SiMe,	Н	SiMe	254.4	31.6	49.6	ı	348.3	35.5	8.0
h	Н	GeMe	261.6	a	56.4	I	346.7	35.0	8.0
	Н	SC,H,	233.5	36.6	64.5	I	346.5	36.5	7.4
	SnMe ₃	SiMe	270.4	27.7	47.8	$241.1(^4J)$	346.0	33.3	8.3
	SnMe	GeMe	276.8	28.8	53.9	244.6(⁴ J)	344.6	32.7	8.5
	SnMe	SnMe	284.0	28.2	54.8	$248.7(^4J)$	347.2	32.2	8.6
	SnMe ₃	SC ₂ H ₅	257.7	28.4	65.7	199.3(4)	340.2	34.6	8.2
GeMe	Н	SiMe	280.3	23.6	48.5	1	349.1	33.4	8.2
'n	Н	GeMe	286.9	23.0	54.6	I	347.4	30.5	8.5
	Н	SC ₂ H,	258.9	26.7	62.6	I	347.6	35.6	7.1
	SnMe,	SiMe	298.1	19.2	46.3	244.6(⁴ J)	347.0	31.7	9.2
	SnMe,	GeMe	304.6	20.1	52.1	$247.3(^{4}J)$	345.7	30.7	9.3
	SnMe	SnMe	310.0	19.3	53.3	250.5(⁴ <i>J</i>)	344.9	30.0	9.7
	SnMe ₃	SC ₂ H ₅	283.7	26.2	61.6	198.6(⁴))	341.3	33.0	7.9
Н	SnMe ₃	SnMe ₃	423.5	6.1	44.8	248.3(⁴ J)	353.5	22.4	12.1
SC,H,	SnMe	SiMe	410.6	35.2	32.2	199.3(4)	353.2	38.4	6.3
5 1	SnMe	GeMe	417.0	26.2	35.1	$198.6(^{4}J)$	352.6	37.6	9.9
	SnMe ₃	SnMe ₃	433.7	32.1	36.4	202.3(⁴))	350.9	36.6	7.2
Br	Н	Н	360.8	32.5	27.4	I	371.5	26.4	1.1
^a Not measu	red.								

²⁹Si and tetramethylstannane as an external standard for ¹¹⁹Sn NMR measurements. The sample temperature was 303 K. ¹³C, ²⁹Si, ¹¹⁹Sn CS were measured with -0.03 ppm accuracy; SSCC -0.07 Hz. ¹³C, ²⁹Si, ¹¹⁹Sn NMR spectra were obtained using complete proton decoupling. Isotope shifts were measured as follows: $^{n}\Delta^{119}Sn(^{13/12}C) = \delta Sn(Sn-^{12}C) - \delta Sn(Sn-^{13}C)$

The compounds were prepared according to [5].

Results

. .

The ¹³C, ²⁹Si, ¹¹⁹Sn NMR chemical shifts (CS) measured for stannylallenes and silylstannylallenes are presented in Tables 1 and 3; the spin-spin coupling constants (SSCC) $^{n}J(^{119}\text{Sn}-^{13}\text{C}), ^{n}J(^{119}\text{Sn}-^{117}\text{Sn}), ^{n}J(^{29}\text{Si}-^{13}\text{C})$ and isotope shifts (IS) are given in Tables 2 and 3.

Analysis of CS of ${}^{13}C$ and ${}^{119}Sn$ for stannylallenes 1 (Table 1) shows that these values are additive and can be described by the equations;

$$\delta({}^{13}C_{\alpha,\gamma}) = 81.2 + \Sigma X_{\alpha} + \Sigma X_{\gamma}$$
⁽¹⁾

$$\delta \left({}^{13}C_{\beta} \right) = 219.0 + \Sigma X_{\beta} \tag{2}$$

$$\delta(^{119}\mathrm{Sn}) = -21.6 + X_{\alpha} + \Sigma X_{\gamma}$$
(3)

where $X_{\alpha,\beta,\gamma}$ are increments of the corresponding substituents in the α,β,γ -positions with regard to the nuclei under study. The calculated increments of substituents are presented in Table 4. The difference between the calculated ¹³C, ¹¹⁹Sn CS and their

Table 3

²⁹Si NMR spectra of stannylsilylallenes

Me ₃ Sn	Y
$\sqrt{C_{\alpha}} =$	$c_{\beta} = c_{\gamma}$
X	L

						-		
No.	х	Y	Z	$\delta(^{29}\text{Si})$	Coupling co	nstants (Hz)		$^{1}\Delta$ 29 Si(C _{α})
				(ppm)	²⁹ Si-C _{CH3}	29 Si-C _a	²⁹ Si- ¹¹⁹ Sn	(ppb)
1	SnMe ₃	SiMe ₃	н	- 5.06	52.86	66.19	27.74	- 9.1
2	GeMe ₁	SiMe ₃	Н	- 5.12	52.91	65.21	26.94	- 9.5
3	SiMe	SiMe ₃	Н	- 4.94	53.20	64.61	26.68	- 9.6
4	SiMe,	SnMe ₃	SnMe ₃	- 3.59	52.75	58.69	27.56(⁴ J)	- 9.8
	5	5	-				$23.81(^{2}J)$	
5	SiMe	SnMe ₂	GeMe ₃	- 3.66	52.87	57.96	$27.16(^{4}J)$	-10.0
	- 3	5	,				$23.28(^{2}J)$	
6	SiMe	Sn Me ₁	SiMe ₃	- 3.98	53.31	57.56	$27.06(^{4}J)$	- 10.5
	6	5	5				$20.80(^{2}J)$	
7	SiMe	н	SiMe ₃	- 3.89	52.95	55.40	18.03	- 10.4
8	SiMe ₂	н	GeMe ₁	-4.01	53.06	55.58	20.14	- 10.4
9	SiMe ₂	н	SC ₂ H,	- 3.41	53.31	52.91	18.49	- 11.1
10	SiMe.	SnMe ₂	SC H.	- 3.34	52.98	55.61	$26.26(^{4}J)$	- 10.3
			- · 2 J			$21.64(^{2}J)$		
	Me-Si.	,H						
11		c = c = c		-0.31				
	Br	ГН						

Measured	Increment of a	group	<u></u> ". <u></u> ".		
value	SnMe ₃	GeMe ₃	SiMe ₃	SC ₂ H ₅	CMe ₃ [6]
$\overline{\delta(^{13}C_{\sigma})}$	-2.5	+ 3.6	+ 2.6	+13.3	+ 28.6
$\delta(^{13}C_{B})$	-6.1	- 5.0	-4.4	-1.6	- 5.6
$\delta(^{13}C_{\gamma})$	-14.1	- 10.0	- 10.8	+ 8.0	- 3.5
$\delta(^{119}\text{Sn})$	$+12.4(\alpha)$	$+7.6(\alpha)$	$+8.7(\alpha)$	$+6.0(\alpha)$	
	$+6.6(\gamma)$	$+4.6(\gamma)$	$+6.3(\gamma)$	$+3.0(\gamma)$	
$^{1}J(^{119}\mathrm{Sn}^{-13}\mathrm{C}_{a})$	$+130.6(\alpha)$	$-113.4(\alpha)$	+139.4(α)		
	$+15.9(\gamma)$	$+9.6(\gamma)$	$+5.2(\gamma)$		
$^{2}J(^{119}\text{Sn}^{-13}C_{\theta})$	$+16.0(\alpha)$	$+13.0(\alpha)$	$+22.1(\alpha)$		
· •	$-4.4(\gamma)$	$-3.6(\gamma)$	$-4.6(\gamma)$		
$^{3}J(^{119}\text{Sn}^{-13}\text{C}_{\star})$	$+10.0(\alpha)$	$+8.0(\alpha)$	$+9.5(\alpha)$		
	-2.1(γ)	-4.0(γ)	-10.7(γ)		

Table 4

Values of the calculated increments of substituents in stannylallenes 1

experimental values for the $C_{\alpha,\beta,\gamma}$ -carbon atoms does not exceed -0.6 ppm, for ¹¹⁹Sn CS -0.3 ppm. The relatively small values of these deviations demonstrate that the increments can be used for analytical purposes. The study of increments for ¹³C (Table 4) provides evidence for a considerably larger influence of the MMe₃ group in the γ -position of the allene system than in the α - and β -positions. The negative sign of the γ -increment results from exponential correlation between the groupspecific electronegativity of the substituent and the γ -increment value [6]. A significant increase in the shielding of the γ -carbon nucleus (owing to the introduction of a MMe₃ group into the α -position of the allene system) is observed in the sequence CMe₃ < GeMe₃ < SiMe₃ < SnMe₃. THis is correlated with the increasing σ -donating capacity of substituents in this sequence, suggesting that the negative values of the γ -increment result from the σ -donating capacity of the MMe₃ group.

Generally, antibate relationships are observed between the ¹¹⁹Sn and ¹³C CS of the β -carbon atom in 1 (Table 1). This speaks in favour of conjugation between the tin atom and the allene system as a downfield shift of the ¹³C_{β} signal corresponds to an upfield shift of the ¹¹⁹Sn resonance. In a series of structurally similar compounds, the relative changes in the shielding of nuclei under the influence of substituents are related to corresponding changes in the electron density of these nuclei. Therefore, one can assume that an increase in the negative charge on the tin atom results from a decrease in the charge of C_{β}: Me₂Sn $-C_{\alpha}=C_{\beta}=C_{\gamma}-$. This conclusion is in agreement with the correlation found earlier between the shielding of the central ¹³C_{β} atom in the allene system and substituent resonance effects [6]. Judging from the β -increments (see Table 4), the π -acceptor capacity of the MMe₃ group increases in the sequence Sn < Ge < Si.

The symbatic changes of $\delta({}^{13}C_{\alpha})$ and $\delta({}^{13}C_{\beta})$ (Fig. 1) suggest a dramatic shift of electrons in the $C_{\alpha}=C_{\beta}$ bond under the influence of substituents Y, Z in 1. Thereby, an increase in the downfield shift of the C_{β} atom resonance is accompanied by a downfield shift of the C_{α} -carbon atom resonance, too. Compounds possessing a SR substituent in the X, Y or Z positions deviate from these relationships. Apparently, this is either due to the conjugation between the unpaired electron pair on the sulphur atom and the MMe₃ group or to differences in the volumes of SR and

MMe₃ groups and hence to the smaller deformation of valency angles at the C_{α} atom. The deviation of the $C_{\alpha}H$ derivative from the correlation speaks in favour of the latter assumption.

The ${}^{n}J({}^{119}Sn{}^{-13}C)$ SSCC are summarized in Table 2. We failed to find a correlation between the ${}^{119}Sn$ and ${}^{13}C$ CS and the corresponding SSCC in 1. Perhaps this can be explained by the fact that CS are mainly determined by the densities of both s- and p-electrons while SSCC mainly depends on the state of s-electrons in the bond.

The ${}^{1}J({}^{119}Sn-{}^{13}C_{\alpha})$ SSCC is smaller than ${}^{1}J({}^{119}Sn-{}^{13}CH_{3})$ in its absolute value, despite the fact that in the case of the first SSCC the carbon atom shows sp^{2} -hybridization. Apparently, the assumption as to the direct correlation between *s*-character of the bond and the SSCC value is fulfilled only for the ${}^{13}C-{}^{13}C$ SSCC and does not work in the case of the ${}^{119}Sn-{}^{13}C$ SSCC.

The SSCC through two bonds $({}^{2}J({}^{119}\text{Sn}{}^{-117}\text{Sn})$ and ${}^{2}J({}^{119}\text{Sn}{}^{-13}\text{C}_{\beta})$ in 1 (Table 2) (except those containing SR substituents)) have a smaller absolute value than those for ${}^{4}J({}^{119}\text{Sn}{}^{-117}\text{Sn})$ and ${}^{3}J({}^{119}\text{Sn}{}^{-13}\text{C}_{\gamma})$. This feature was also observed for the ${}^{2}J({}^{119}\text{Sn}{}^{-29}\text{Si})$ and ${}^{4}J({}^{119}\text{Sn}{}^{-29}\text{Si})$ SSCC in silyl-substituted stannylallenes (Table 3), being likely due to the different sign of the ${}^{2}J({}^{119}\text{Sn}{}^{-X})$ and ${}^{4}J({}^{119}\text{Sn}{}^{-X})$ SSCC, as it is known that ${}^{2}J({}^{119}\text{Sn}{}^{-117}\text{Sn}) > 0$, ${}^{4}J({}^{119}\text{Sn}{}^{-117}\text{Sn}) < 0$ [1].

The additivity rule for SSCC in stannylallenes works worse than for CS (see Table 2, 3). Nevertheless, ${}^{n}J({}^{119}Sn{}^{-13}C)$ in 1 can be predicted satisfactorily using the equations:

$${}^{1}J({}^{119}Sn - {}^{13}C_{\alpha}) = 390.6 + X_{\alpha} + \Sigma X_{\gamma}$$
(4)

$${}^{2}J\left({}^{119}\mathrm{Sn}{-}^{13}\mathrm{C}_{\beta}\right) = 14.7 + \mathrm{X}_{\alpha} + \Sigma\mathrm{X}_{\gamma}$$
⁽⁵⁾

$${}^{3}J\left({}^{119}\mathrm{Sn}{}^{-13}\mathrm{C}_{\gamma}\right) = 50.6 + \mathrm{X}_{\alpha} + \Sigma\mathrm{X}_{\gamma}$$
(6)

 $X_{\alpha,\gamma}$ are the increments of substituents (Table 4). The accuracy of prediction is equal to -2.0 Hz for ${}^{1}J({}^{119}\text{Sn}{-}^{13}\text{C}_{\alpha})$, -1.0 Hz for ${}^{2}J({}^{119}\text{Sn}{-}^{13}\text{C}_{\beta})$ and -2.0 Hz for ${}^{3}J({}^{119}\text{Sn}{-}^{13}\text{C}_{\gamma})$. It is known [6] that the so-called pairwise interactions can be used for the improvement of the results. However, due to the large mutual spacing of the groups this approach seems applicable to allenes only if one assumes the interaction between the nuclei through space. Apparently, the latter assumption can be used to explain the increase in the ${}^{2}J({}^{119}\text{Sn}{-}^{117}\text{Sn})$ value in 1 with X = SnMe₃ in the sequence of substituents Y, Z: H < SiMe₃ \approx SC₂H₅ < GeMe₃ < SnMe₃.

In contrast with the ¹¹⁹Sn resonance, the ²⁹Si CS of the stannylsilylallenes that have been studied are much less sensitive to the electronic effects of substituents and fall within the range -4 ± 1 ppm (Table 3). The SSCC involving the ²⁹Si nucleus also change within a considerably smaller range than those corresponding to $^{n}J(^{119}\text{Sn}-^{13}\text{C})$. The $^{1}J(^{29}\text{Si}-^{13}\text{C}_{\alpha})$ SSCC being an exception to the rule, becomes smaller by 7-7.5 Hz under the influence of the α -SnMe₃ group (Table 3).

The isotope shifts resulting from the substitution of ${}^{12}C$ by ${}^{13}C$, in different parts of the molecule can easily be measured during the study of SSCC in ${}^{119}Sn$ and ${}^{29}Si$ NMR spectra. The results of these measurements are summarized in Table 2 (for ${}^{119}Sn$) and in Table 3 (for ${}^{29}Si$). According to [7], the isotope shift is a function of changes in the dynamic properties of a molecule as well as of deviations from the

Fig. 1. Relationship between $\delta(C_{\alpha})$ and $\delta(C_{\beta})$ CS in stannylallenes 1 (X = Δ ; SnMe₃; \bullet : SiMe₃; \circ : GeMe₃; \blacksquare : H, SC₂H₅, Br). $\delta(C_{\alpha}) = -406.6 + 2.35\delta(C_{\beta})$ (r = 0.82; n = 28); a: X = H; b, c: Z = SC₂H₅.

Fig. 2. Dependence of IS ${}^{1}\Delta^{119}Sn(C_{\alpha})$ on ${}^{1}\Delta^{119}Sn(C_{CH_3})$ in stannylallenes 1 (X = Δ : SnMe₃; \bullet : SiMe₃; \circ : GeMe₃; \blacksquare : H, SC₂H₅, Br). ${}^{1}\Delta^{119}Sn(C_{\alpha}) = 53.42 - 2.46 {}^{1}\Delta^{119}Sn(C_{CH_3})$ (r = 0.934; n = 27); a: X = Br.

Fig. 3. Dependence between ${}^{1}\Delta^{119}\text{Sn}(C_{\alpha})$ IS and ${}^{1}J({}^{119}\text{Sn}{}^{-13}C_{\alpha})$ SSCC in stannylallenes 1 (X = \triangle : SnMe₃; \odot : SiMe₃; \odot : GeMe₃; \blacksquare : H, SC₂H₅, Br); a, b, c: X = SC₂H₅.

equilibrium geometry (both caused by isotopic replacement). Substituents change the electronic properties of a molecule and affect the isoshielding derivative in the vicinity of nuclei and, in turn, change the values of isotope shifts in NMR spectra. Therefore, the latter are linearly correlated with the physical or electronic properties

Fig. 4. Relationship between ${}^{1}\Delta^{119}Sn(C_{CH_3})$ IS and ${}^{1}J({}^{119}Sn-{}^{13}C_{CH_3})$ SSCC in stannylallenes 1 (X = Δ : SnMe₃; \odot : SiMe₃; \circ : GeMe₃; \blacksquare : H, SC₂H₅, Br); a: X = H; b, c, d: Z = SC₂H₅.

Fig. 5. Dependence of ${}^{1}\Delta {}^{29}Si(C_{\alpha})$ IS on ${}^{1}J({}^{29}Si-C_{\alpha})$ SSCC in silvallenes. Numeration of compounds as in Table 3.

which are related to the different electronic configurations of a molecule (bond length, bond order, etc). Comparison of IS for ${}^{1}\Delta^{119}Sn(C_{\alpha})$ and ${}^{1}\Delta^{119}Sn(C_{CH_3})$ bonds (Fig. 2) shows that these values are interrelated. An increase in the ${}^{1}\Delta^{119}Sn(C_{CH_3})$ value is accompanied by a decrease in ${}^{1}\Delta^{119}Sn(C_{\alpha})$. In other words, an increase in the strength of the Sn-C_{α} bond (increased ${}^{1}\Delta^{119}Sn(C_{\alpha})$) is connected with a decrease in the strength of the Sn-CH₃ bond (decreased ${}^{1}\Delta^{119}Sn(C_{CH_3})$).

Linear correlations are observed between the ${}^{1}J({}^{119}Sn-{}^{13}C_{i})$ SSCC and the corresponding isotope shift ${}^{1}\Delta^{119}Sn(C_{i})$ (Figs. 3 and 4). Thus, an increase in SSCC is accompanied by a decrease in IS values:

$${}^{1}\Delta^{119}\text{Sn}(\text{C}_{\alpha}) = 54.64 - 0.08 \, {}^{1}J({}^{119}\text{Sn} - {}^{13}\text{C}_{\alpha}) \tag{7}$$
$$(r = 0.96; n = 25)$$

$${}^{1}\Delta^{119}\mathrm{Sn}(\mathrm{C}_{\mathrm{CH}_{3}}) = 111.64 - 0.298 \, {}^{1}J({}^{119}\mathrm{Sn}{-}^{13}\mathrm{C}_{\mathrm{CH}_{3}})$$
(8)

$$(r = 0.925; n = 24)$$

An analogous correlation has been found between ${}^{1}J({}^{29}\text{Si}-{}^{13}\text{C}_{\alpha})$ and ${}^{1}\Delta {}^{29}\text{Si}(\text{C}_{\alpha})$ (Fig. 5):

$${}^{1}\Delta^{29}\mathrm{Si}(\mathrm{C}_{\alpha}) = -16.91 + 0.12{}^{1}J({}^{29}\mathrm{Si}{-}^{13}\mathrm{C}_{\alpha})$$
⁽⁹⁾

(r = 0.93; n = 10)

Similarity has been observed between the IS values in ¹¹⁹Sn and ²⁹Si NMR spectra caused by the ^{12/13}C isotope substitution. The correlation between ¹ Δ ¹¹⁹Sn(C_a) and ¹ Δ ²⁹Si(C_a) found in isostructural stannyl- and silylallenes supports this interpretation to (Fig. 6):

$${}^{1}\!\Delta^{29}\text{Si}(C_{\alpha}) = -6.14 - 0.13^{1}\!\Delta^{119}\text{Sn}(C_{\alpha})$$
(10)
(r = 0.94; n = 8)

Fig. 6. Relationship between ${}^{1}\Delta^{29}Si(C_{\alpha})$ and ${}^{1}\Delta^{119}Sn(C_{\alpha})$ IS in isostructural stannyl- and silylallenes. Numeration of compounds as in Table 3.

Judging by this equation the sensitivity of ¹¹⁹Sn resonance considerably exceeds that of ²⁹Si resonance; this is in agreement with the total range of CS changes observed for these nuclei.

References

- 1 B. Wrackmeyer, ¹¹⁹Sn NMR Parameters, in Annu. Rep. NMR Spectrosc., 16 (1985) 73.
- 2 B. Wrackmeyer, J. Magn. Reson., 39 (1980) 359.
- 3 T.N. Mitchell, C. Nettelbeck, Magn. Reson. Chem., 25 (1987) 879.
- 4 B. Wrackmeyer, J. Organomet. Chem., 205 (1981) 1.
- 5 E.T. Bogoradovsky, V.S. Zavgorodny, A.A. Petrov, Zh. Obshch. Khim., 58 (1988) 495 and 2753.
- 6 W. Runge, J. Firl, Ber. Bunsenges. Phys. Chem., 79 (1975) 913.
- 7 P.E. Hansen, Isotope Effects in Nuclear Shielding, in Progr. NMR Spetrosc., 20 (1988) 207.